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Abstract

Playing with the math of DPO leads to a neat theorem. TL;DR: by casting an
LLM output distribution as a mixture of an ‘aligned’ distribution and ‘unaligned’
distribution with certain human preference constraints, we can write the exact form
of the LLM output distribution after preference tuning in terms of these mixture
components; we can also show that output distribution mass always shifts from the
unaligned component to the aligned component.

1 Preference tuning shrinks, but not truncates, unaligned outputs

1.1 Background: preference tuning

In preference tuning, we finetune a model, usually a base pretrained model or SFT-treated model,
using a dataset of human preference samples (z;,y;, ..., y¥) ~ D. To create a preference dataset, for
each prompt z;, we independently sample k& completions from our model, and have human raters
supply k labels; for example, human raters can say which one of k = 2 completions they prefer,
listwise rank k£ > 2 completions, or give a thumbs up/down for k¥ = 1 completion. In any case,
we model our sampled human preferences as generated from a latent reward function r(y; «), and
our goal is to find preference-tuned model parameters § which maximize the expected reward of
continuations sampled from the model, while regularizing for KL distance between the continuation
output distributions of # and the pre-tuning model checkpoint, henceforth called the "reference
model" ref. Our preference-tuning objective function is

L(0) = max By ep (y/2) [r(y; )] — BDxL(po(ylz) || pres(ylz)) )]

To approximate the latent reward, we may take one of several approaches from the literature. For
example, RLHF [LJX+22] trains a reward model (often, a linear probe on the last layer of our
language model) to estimate rewards, following the Bradley-Terry model [RM52] for preference
probabilities based on latent reward. Another method, DPO [RAE+23|], optimizes the language model
directly with a classification loss, which corresponds to an implicit reward function also following the
Bradley-Terry model and has the same optimal solution as the original preference-tuning objective.
Other preference-tuning methods in the literature, like LiPO, GRPO, new one comes out every week
these days..., KTO [KWD+23]] and SLiC-HF [YRT+23]], are also possible. In our subsequent analysis
of preference tuning, we only assume the preference tuning objective in (I, so our treatment is general
to any preference tuning method. (For example, we don’t even assume Bradley-Terry preferences, so
our analysis will apply to KTO and SLiC-HF.) Add formal statement of Bradley-Terry?

1.2 Distribution shift in preference-tuned model outputs

The typical end goal of preference tuning is to “align” the language model. In other words, if we
assume the latent reward model driving human raters’ preferences corresponds to human values such
as helpfulness, honesty, morality, and more, preference tuning procedures should push the model’s
outputs on any prompt to embody these human values more effectively on average.
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One interpretation of this goal is that, for any given prompt x, we can construct any aligned distribution
of outputs A, from which sampled outputs y ~ p .4, (-|x) have a higher expected reward—i.e., the
output is more “aligned”—compared to sampling from the reference model p¢(-|x). On the flipside,
the remainder of the probability mass of p,.s(-|z) not comprised of .A would be represented by the
“unaligned” distribution U,,, for which expected rewards of sampled outputs are lower than those
of ref. In this interpretation, we may write pye(-|x) as a mixture of the aligned and unaligned
distributions

Pref(yl) = cwpa, (ylz) + (1 — az)pu, (y|2)- @

In this view, our hope for preference tuning is that the resulting model’s output distribution conforms
as closely as possible to A, and, in turn, is influenced as little as possible by U/,,. We find that
preference-tuning shifts model outputs towards the aligned distribution in a certain fashion: crucially,
the unaligned component U/, of mixture (2) is shrunk but not truncated, and even outputs y that
exist only in the unaligned distribution (py, (y|x) > 0 and p 4, (y|z) = 0) are not fully expunged
from the model (pg(y|x) > 0). We present a theorem which characterizes the distribution shift of a
preference-tuned model with respect to the aligned and unaligned component distributions.

First, given any prompt z, decompose the output distribution of the reference model as p,.¢(y|z) =
a(z)pa(ylz) + (1 — az)py(y|x) for some "aligned" and "unaligned" distributions A and U, respec-
tively. (For brevity, we’ve dropped the subscripts from A, and U/,.) Let 6 be the optimal model
parameters found via preference tuning.

Lemma 1 Assume the preference-tuning objective function used is eq. (I). With no additional
assumptions on A and U, the output distribution of 6 can be written as

po(ylr) = aa(y; ©)pa(ylz) + au(y; ©)pu(ylz)

1

r(y;z)/B C) —
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eatra) = ..

where Z(x) = y|x)e"Wi®)/P is the partition function of pe(y; x).

y€Esupp po (-|z) pref(

Theorem 2 Write the "total probability mass” of A in pe(-|z) as TPM(A;z) =
ZyGSupp po(-|a) aA(y;x)pa(y|x) (and define this respectively for U). If the reward function r(y; x)
satisfies the following additional assumptions:

» r(y;x) and pA(y|x) are positively correlated
» r(y;x) and py(y|x) are negatively correlated
* 7 is finite
then the total probability masses of A and U in py(-|x) satisfy
1> TPM(A;2) > az), 0 < TPMU;z) < (1 —a(zx)).

The total probability masses of .4 and I/ can be viewed as a measure of the aligned (resp. unaligned)
distribution’s influence on the tuned language model’s output distribution. Intuitively, we can
interpret Theorem [2] as the following idea: if we select aligned and unaligned distributions that indeed
correspond to a level of "alignment" or utility measured by our rewards, then the preference-tuned
model draws outputs more heavily from the aligned distribution, while the influence of the unaligned
distribution is diminished but not expunged. Crucially, the preference-tuned model still has nonzero
probability of producing any harmful or otherwise undesirable output that was possible in the base
model.

1.3 Proofs

Our proofs of Lemma [I] and Theorem [2] will illuminate further details for how the probability of
eliciting a given output from our model is amplified or diminished as a function of the reward.

First, the closed-form solution for the preference-tuning objective (T) is well-known [cite something?],
but we reproduce it here. First, rewrite the objective as



£0) = 3 polylo)r(y: ) — Bpolyle) log (”9(?"””))

Pref(ylT)
— 83 polyle) [ log e/ — log (% )]

=-8 Zpg(y|x) log ( po(ylz) > + Blog Z(x)

%pref (y|z)er(wsz)/B
where Z(z) = 3_, pref(ylz)em®)/7 is the partition function. Notice that %p,,ef(yu)e"(y?”w
is a valid probability distribution, so by Gibbs’ inequality, the objective £(6) is maximized when

1
— r(y;x)/B
p9(y|x) Z(m)pref(mx)e :

Substituting the mixture formulation for p,.s(y|x) and performing a little more algebra gives us

po(ylz) = aaly; z)palylr) + au(y; z)puly|z)

aaly;x) = a(m)er(y;ac)/ﬁ7 oy (y; ) = (1— a(x))er(y;a:)/[ﬁ

Z(x) Z(x)

as Lemma [T] states.

For Theorem 2] we assumed r(y; x) was positively correlated with p 4 (y|z) and negatively correlated
with py (y|z). Since Z(x) and a(x) are constants with respect to y, a4 (y; =) and oy (y; ) are clearly
monotonic functions of r(y; ), and as a result, the correlation properties are preserved: a4 (y; ) is
positively correlated with p 4 (y|z), and ag(y; ) is negatively correlated with py, (y|x).

Notice that finiteness of  implies e”(¥%)/# > ( everywhere, so the output distribution of # must have
nonzero probability for any output in supp pr. s. Therefore, supp pg(-|) = supp pres(-|z). Consider
the expectations of a4 (y; x) and ag(y; ) over a uniform distribution over (WLOG) supp po(-|x),
and use the correlation properties:

EyEunif(suppngw)) [OCA(y; $)pA(y‘$)] > Ey [CMA(y; I)}Ey [p.A(y|z)]
1

N %a(@%[eﬂw)/ﬁwy[m(ylx)]-

Eylow(y; 2)pu(yle)] < Eylow(y; ©)] Ey[pu(y|x)]

1 r(y;z
- mu — a(z)) B, [e" @)/ BB, [y (y]x)).

(For the sake of brevity, we mostly omit writing the distribution over which the expectation is taken;
for the rest of the proof, £, [-] is shorthand for Ey e unit(supp p (-|2)) [-]-) The Ey [e"(¥:#)/8] and partition
function terms vanish upon dividing the inequalities:

Eyloa(y;o)palyle)]  _ Eyla(z)palylr)]

Eylou(y; 2)pu(yle)] — Ey[(1 — o(z))pu(yle)]
Reciprocating the inequality, adding 1 to both sides, and reciprocating again yields:

Eylaaly;x)palyle)]  Eyla(x)palyl)]
Eylpo(yl2)] Ey[pres(ylz)]
Finally, we multiply all expectations by card(supp pg(-|x)). Using the property that

card(supp p) : Eyeunif(suppp) [p(l‘)] =1

for any discrete probability distribution p, along with our earlier observation that supp pg(-|x) =
supp pres(-|z), we see that the expectations of pg(y|x) and p,.;(y|z) vanish. On the other hand,
multiplying the expectation of a4 (y; x)p.a(y|z) by card(supp pg(-|x)) gives the total probability
mass. We recover

TPM(A; z) > a(x) and likewise, TPM(U; x) < (1 — a(x)).



1.4 More Notes

This section is informal, I'm jotting down more observations about the post-tuning output distribution
and what intuition that might build.

An important point we raised midway through the previous proof is that, with finite 7, as long as
some continuation y of a given prompt can be naturally outputted from the model pre-preference
tuning, the tuned model # must have nonzero probability of outputting that same continuation for the
prompt. More specifically, the output probability for y given  is shrunk by a factor of e”(¥:%)/8,

In practice, great pains are taken to make sure the reward model does not degenerate into negative
infinite outputs [should cite something for this], so the finiteness assumption is virtually guaranteed.
As such, it may be concerning that most, if not all, preference-tuned frontier models still retain
some base model-level capabilities for harmful outputs; with certain prompts, these preference-tuned
models may be able to produce harmful outputs at a rate much closer to that of their respective
base models. The (rough) intuition is that, if we can discover prompts where the unaligned mixture
component greatly dominates over the aligned mixture component for continuations, then, even
after preference-tuning amplifies the aligned component and shrinks the unaligned component, we
still have significant risk of sampling from the unaligned component using these prompts on the
preference-tuned model.

This idea came to mind when I realized a link between the training data extraction paper [MNJ+23|]
and "What’s In My Big Data?" paper [YAI+23]. The training data extraction paper finds that using
long single-token repeats as inputs (for example, "aaaaaaaaaaaaaaaaaaaa or "////////////////////") causes
OpenAl chat models to stop behaving in the user-facing chat format and instead give printouts of
boilerplate documents/information, mostly hallucinated but occasionally regurgitations of genuine
private data. The "WIMBD?" paper analyzes web-scale datasets with a mapreduce-based system and
finds out the most common 10-grams in all explored datasets are single-token repeats (i.e. for each
dataset, across the 10 most common 10-grams, majority if not all are single-token repeats). The paper
looks at the context of these 10-grams and finds that they usually come from delimiters in common
documents and files. The realization here is that these single-token repeats are virtually never found
as outputs of preference-tuned chat models, but they’re very common in the pretraining data, and
would actually be highly weighted in the output distribution of a base model. By having very higher
mass in a base model’s output distribution vs. very low mass in a preference-tuned model’s output
distribution, do long single-token repeats steer a tuned model to behave like a base model?

logitsy, = a * logitsy — B * logits,.r
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