
On Sufficient Conditions for Trapped Surfaces in Spherically Symmetric Spacetimes

Abstract. Black hole formation in a spacetime, while not fully understood, can be indicated

by the local existence of a trapped surface. The Trapped Surface Conjecture (TSC) states that

trapped surfaces will form from sufficiently high concentrations of matter. Progress on the

TSC has only been made using several spacetime constraints, including spatial symmetries,

time symmetry, and the maximal hypersurface. We investigated the TSC in spherical sym-

metry by utilizing non-positivity of null expansion of a trapped surface within the context of

expressions for various geometrical quantities. We found that if certain inequalities involving

energy density, proper radius, and proper area of a two-surface on a time-symmetric time slice

are satisfied, then a trapped surface exists inside the two-surface. These criteria predict trapped

surfaces in some spacetimes, including the constant-density star, where previous analyses fail

to. In the non-time-symmetric case, we found that if a two-surface on a time slice satisfies con-

straints involving mean curvature, mass content, radial flow, and proper radius, then a trapped

surface exists inside the two-surface. This generalizes the main non-time-symmetric result ob-

tained by Bizon et al. 1988, removing the requirement for a maximal hypersurface. Our results

constitute progress toward proving the TSC and understanding black hole formation.

1



1 Introduction

In general relativity, a feature of interest in any spacetime is the possibility of gravitational

collapse and black hole formation. The presence of a black hole can be indicated by the de-

tection of its event horizon. However, predicting the existence of an event horizon is only

possible by considering the entire causal structure of the spacetime, and is not possible through

the consideration of local geometries alone (Faraoni, 2013). Penrose formulated the concept

of a trapped surface on a local geometry of a spacetime to address this problem (Penrose,

1965). On a time slice of the spacetime, a trapped surface is a closed two-surface satisfying

the condition that both sets of future-directed null normal vectors on the surface are convergent

(Senovilla, 2011). The matter inside a trapped surface experiences gravitational confinement

and is sealed off from the spacetime outside the trapped surface (Israel, 1986). The existence

of a trapped surface is a sufficient condition for the spacetime to evolve a singularity, given

certain assumptions on the spacetime (Hawking and Penrose, 1970). As a result, black hole

existence or formation can be predicted by determining whether a trapped surface exists in the

spacetime. The advantage of considering trapped surfaces as opposed to event horizons is that

trapped surfaces can be studied using only local geometries of the spacetime, which, unlike the

global structure, can be fully specified.

One important unsolved problem in the field is the Trapped Surface Conjecture (TSC),

which states that on a time slice, if any mass is concentrated in a small enough volume, then

there exists a trapped surface containing the mass (Seifert, 1979). A general proof of the TSC

would shed light on the conditions necessary for black hole formation. Some progress on the

TSC has been made, but with various constraints on the spacetime, such as spherical symme-

try, axial symmetry, time symmetry, and the maximal time slice (Khuri, 2009; Malec, 1991;

Malec and Xie, 2015; Flanagan, 1991; Schoen and Yau, 1983; Schoen and Yau, 2001). These

restrictions limit our understanding of the TSC to only a small subset of possible spacetimes,

and no general proof currently exists. A partial proof of the TSC is given in a series of papers

by Bizon, Malec, and Murchadha, which present several sufficient conditions and necessary

conditions for the existence of a trapped surface that are dependent on the mass content and

volume of a region of space (Bizon et al., 1988; Bizon et al., 1989; Bizon et al., 1990). The
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sufficient conditions in Bizon et al., 1988 are found in the case of a spherically symmetric

maximal time slice, and some conditions are obtained with the additional assumption of time

symmetry. Therefore, the results of these papers are only applicable to a few cases of space-

times and must be modified for those without time symmetry, those without a maximal slice,

or those that deviate from spherical symmetry.

This paper aims to address these deficits by identifying additional and more general suf-

ficient conditions for the existence of a trapped surface in a spherically symmetric spacetime.

Two of these serve as alternatives to the results of Bizon et al., 1988, and one requires weaker

assumptions, making the result more generally applicable. In §3, numerical examples of spher-

ically symmetric spacetimes are tested, and it is found that the constant-density star contains

trapped surfaces despite not satisfying the main time-symmetric condition of Bizon et al., 1988.

In §4, several alternative sufficient conditions for trapped surfaces in a time-symmetric max-

imal slice are found, one of which correctly predicts trapped surfaces in the constant-density

star. In §5, the restriction of the maximal slice is relaxed, leading to a generalization of the

main non-time-symmetric result of Bizon et al., 1988 to time slices with non-negative mean

curvature in certain regions of the slice. In §6, possible directions for future research are dis-

cussed. The results of this paper offer further insight into the validity of the TSC and progress

toward the general proof of the TSC.

2 Definitions and Preliminaries

In this section, relevant terms are defined and notation to be used throughout this paper

is introduced. In a given 4-dimensional spacetime, a time slice is a 3-dimensional spacelike

hypersurface obtained by holding the timelike coordinate constant.

A time slice is fully described by two pieces of initial data: the three-metric gab and the

extrinsic curvature Kab. From these two, additional quantities can be derived including the

three-dimensional Ricci scalar, denoted by (3)R, and the mean curvature, equal to the trace of

the extrinsic curvature and denoted by trK = gabKab (Carroll, 2016).

In some spacetimes there exists a time slice with constant mean curvature, which is called
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a CMC slice. Some spacetimes have a CMC slice where the mean curvature vanishes, in which

case the time slice is called maximal (Carroll, 2016).

On a given time slice there is a spatial distribution of matter for which geometrical quantities

such as mass and volume are defined. The energy density at a point is denoted by µ , which

can be integrated over a volume to obtain the mass content M. The momentum density, which

describes matter flow, is denoted by ja.

Closed two-surfaces can also be defined within the time slice. We use δΩ to denote such

a surface and Ω to denote the enclosed volume. Any δΩ is equipped with a set of future-

directed outward null unit normal vectors, which we denote na. Any δΩ will have a proper

area (surface area) which we denote A. In addition, if δΩ is spherical, we will also have a

proper radius which we denote L. Finally, for any δΩ we can write the enclosed mass content

as

M =
∫

Ω

µ dV. (1)

To denote covariant derivatives, del notation is used, i.e. the symbol ∇a denotes the covariant

derivative operator with respect to a.

Next, several preliminaries are introduced, all of which have previously been established in

Bizon et al, 1988. First, properties of matter fields and trapped surfaces in a general spacetime

are discussed, then simplifications in the two cases of spherical symmetry and time symmetry

are introduced.

Remark 1. On any time slice of a given spacetime, there are Hamiltonian constraints on the

energy density and momentum density (Bizon et al., 1988):

(3)R−KabKab +(trK)2 = 16πµ,

∇a[Kab−gab(trK)] = 8π jb.

(2)

Remark 2. One definition of a trapped surface is that the rate of expansion of the area of a shell

of outgoing future-directed null vectors on the surface must be non-positive. We can write out

an expression for this rate of expansion using the initial data on a time slice. A two-surface is
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trapped if and only if it satisfies (Bizon et al., 1988):

∇ana +Kabnanb−gabKab ≤ 0. (3)

We refer to (3) as the expansion condition.

Remark 3. Assume that the time slice is spherically symmetric. Then, in isotropic coordinates,

the conformal factor Φ is a function of the radial coordinate only. We can write the metric in

isotropic coordinates as

gab = [Φ(r)]4δab (4)

where δab is the flat metric (Bizon et al., 1988). Note that, without loss of generality, we can

take Φ to be always positive. In isotropic coordinates, the Ricci scalar takes the form

(3)R =−8Φ
−5

∆Φ (5)

where ∆ denotes the Laplacian operator in flat coordinates (Bizon et al., 1988). Since Φ depends

only on r, using the transformation of a Laplacian from Cartesian coordinates to spherical

coordinates, we can rewrite (5) as

(3)R =− 8
r2 Φ

−5 d
dr

(r2 dΦ

dr
). (6)

Remark 4. When the time slice is time-symmetric, the matter is instantaneously at rest and the

momentum density vanishes. On a time-symmetric slice the extrinsic curvature Kab vanishes

(Bizon et al., 1988); then the expansion condition reduces to

∇ana ≤ 0. (7)

In addition, the Hamiltonian constraint for energy density reduces to

(3)R = 16πµ. (8)
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Note that, since the extrinsic curvature of a time-symmetric slice vanishes, the trace of the

extrinsic curvature must also vanish, so by definition a time-symmetric slice must also be max-

imal.

Remark 5. Suppose the time slice is both spherically symmetric and time-symmetric. We can

foliate the time slice into spherical surfaces of constant coordinate radius on which we test the

simplified expansion condition (7). On any such spherical surface, the expansion condition

reduces to
dΦ

dr
≤−Φ

2r
. (9)

3 Conformal Factors and Trapped Surfaces

In this section, we will discuss several specific cases of conformal factors, for which we

test both the expansion condition and the main time-symmetric condition in Bizon et al., 1988.

Throughout this section we give discussions in spherically symmetric time-symmetric slices.

In Bizon et al., 1988, it is shown that, if

M ≥ L (10)

for a spherical surface in a spherically symmetric, time-symmetric slice, then there must be a

trapped surface inside the spherical surface. In the following, we will test the condition M ≥ L

on several examples of spacetimes.

If a matter distribution is bounded inside some coordinate radius r′ and the spacetime is a

vacuum outside of the matter distribution region, then at any radius r ≥ r′ the conformal factor

follows the exterior Schwarzschild solution

Φ = 1+
m
2r

(11)

where m is the ADM mass (Arnowitt et al., 1960) of the matter distribution. Since the Laplacian

of (11) vanishes, the Ricci scalar vanishes in the exterior Schwarzschild solution and, by (8),

the energy density is zero when r ≥ r′. We now consider a spherical surface of coordinate
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radius r0 ≥ r′. As we increase the radius of the spherical surface, the mass content remains

constant but the proper radius L increases. Therefore, if the condition M ≥ L is satisfied for

a spherical surface at r0 > r′, then it must be satisfied for a spherical surface at r0 = r′. This

indicates that testing M ≥ L at the boundary of the matter distribution is sufficient to verify

whether a trapped surface exists in the exterior Schwarzschild solution. On the other hand,

the expansion condition indicates that a trapped surface exists in the exterior Schwarzschild

solution only when

r0 ≤
m
2
. (12)

We see that, for the exterior Schwarzschild solution, the expansion condition predicts trapped

surfaces more effectively than M ≥ L. With the exterior Schwarzschild solution examined, we

now consider when a trapped surface occurs inside a bounded matter distribution.

Here we examine a class of conformal factors of the form Φ = (1+ra)−b where a and b are

positive constants. This class of conformal factors arises as a generalization of the conformal

factor for the constant-density star, which is described by Φ = (1+ r2)−
1
2 . First we test the

expansion condition on any Φ = (1+ ra)−b. We find that trapped surfaces appear on spherical

surfaces of coordinate radius r0 satisfying

r0 ≥ (2ab−1)−
1
a . (13)

Now we test the condition M ≥ L. For any Φ = (1+ ra)−b, the Ricci scalar becomes:

(3)R = 8ab(1+ ra)4b−2ra−2[(1−ab)ra +(a+1)]. (14)

The weak energy condition requires that the energy density, and therefore the Ricci scalar, is

non-negative, so (14) implies a constraint ab ≤ 1. We now consider a spherical surface δΩ of

constant coordinate radius r0. The mass content inside δΩ is

∫
Ω

µ dV =
1
4

∫ r0

0

(3)RΦ
6r2 dr

= 2ab
∫ r0

0
(1+ ra)−2b−2ra[(1−ab)ra +(a+1)]dr,

(15)
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where the first equality follows from using spherical isotropic coordinates. Then the condition

M ≥ L becomes

∫ r0

0
(1+ ra)−2b−22abra[(1−ab)ra +(a+1)]dr ≥

∫ r0

0
(1+ ra)−2b dr. (16)

The integral for M contains an additional factor (1+ra)−22abra[(1−ab)ra+(a+1)] compared

to the integral for L. Note that

lim
r→∞

(1+ ra)−22abra[(1−ab)ra +(a+1)] = 2ab(1−ab), (17)

and from ab≤ 1, the AM-GM inequality gives us 2ab(1−ab)≤ 1
2 . Therefore, in (16) the inte-

gral for M grows less quickly than the integral for L when r0 becomes large. This implies that

L will overtake M at some point and there is an upper bound to the trapped surfaces predicted

by the condition M ≥ L.

Therefore, it is possible that M≥ L is not satisfied anywhere in the spacetime. We note that,

in the constant-density star described by Φ = (1+ r2)−
1
2 , M ≥ L becomes

∫ r0

0
(1+ r2)−36r2 dr ≥

∫ r0

0
(1+ r2)−1 dr, (18)

which is not true for any value of r0. Therefore, although (13) indicates that every spherical

surface of coordinate radius r0 ≥ 1 is trapped for the constant-density star, the condition M ≥ L

is not satisfied anywhere, so it cannot be used to predict any trapped surfaces in the constant-

density star.

Spherically symmetric spacetimes which do not satisfy M ≥ L anywhere pose a problem in

relation to the TSC. If there does exist a trapped surface somewhere in such a spacetime, as is

the case for the constant-density star, we are unable to show, using currently known conditions,

that the trapped surface occurs due to a high enough matter concentration in a small enough

volume. To address this problem, in the next section, we will find several alternative conditions

which state that the mass content must exceed some volume-related quantity, and which can

predict trapped surfaces in some spacetimes in which M ≥ L is never satisfied.
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For the rest of this paper, we will work in time slices which are spherically symmetric.

4 Time Symmetry

In this section, we want to find sufficient conditions in spherical symmetry for the existence

of a trapped surface in terms of geometrical quantities. The advantage of such conditions is

that they will have a direct physical interpretation and, despite our use of isotropic coordinates

in deriving them, these conditions will be applicable in any coordinate system. The purpose of

this section will be to find alternatives for M ≥ L in a time-symmetric slice.

For the rest of this section, we will use spherically symmetric time-symmetric slices, which

we recall must also be maximal by §2, Remark 4. We first establish the mass content enclosed

in some surface δΩ of coordinate radius r0. Using (5) and (8) and integrating the energy

density over the enclosed volume, we have the following equalities for the mass content inside

a spherical surface δΩ:

M =
∫

Ω

µ dV =
1

16π

∫
Ω

(3)RdV =
1
4

∫ r0

0

(3)RΦ
6r2 dr

=−2
∫ r0

0
Φ∆Φr2 dr.

(19)

We also establish expressions for various geometrical quantities. From the expression for the

volume element on a Riemannian manifold (Carroll, 2016), expressions for the proper radius L

and proper area A can be derived:

L =
∫ r0

0
Φ

2 dr,

A = 4πr2
Φ

4.

(20)

In the following, we will apply (19) and (20) to find several different sufficient conditions for

the existence of a trapped surface in the interior of δΩ.

Theorem 1. Assume that the time slice is spherically symmetric and time-symmetric. For some
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spherical surface δΩ of coordinate radius r0, if

M ≥ 1
2

L+

√
A(r0)

4π
, (21)

then there exists a trapped surface inside δΩ.

Proof. From (19), we have that

∫
Ω

µ dV =−2
∫ r0

0
Φ∆Φr2 dr

=−2
∫ r0

0
Φ

d
dr

(r2 dΦ

dr
)dr

= 2
∫ r0

0
r2(

dΦ

dr
)2 dr −2r2

Φ
dΦ

dr
|r=r0

(22)

where we have transformed the Laplacian from flat to spherical coordinates to obtain the sec-

ond equality and we have integrated by parts to obtain the third equality. The weak energy

condition on (5) requires that the Laplacian is non-negative, and since Φ is positive, Φ must be

a decreasing function of r by the min-max theorem (Bizon et al., 1988).

Assume that there are no trapped surfaces in the interior (including the boundary) of δΩ.

Then, from (9) we obtain

0 <−dΦ

dr
<

Φ

2r
(23)

everywhere inside δΩ. If (23) is true, then from (22) we have an upper bound on the integral

of energy density:

∫
Ω

µ dV < 2
∫ r0

0
r2(

Φ

2r
)2 dr+2Φ(r0)r2

0
Φ(r0)

2r0

=
1
2

∫ r0

0
Φ

2 dr+ r0[Φ(r0)]
2.

(24)

Hence, inequality (24) is a necessary condition for the non-existence of trapped surfaces inside

δΩ. Note that both terms on the right hand side can be written in terms of the proper radius

and proper area. By (24) and (20), if there are no trapped surfaces inside δΩ, then we have

∫
Ω

µ dV <
1
2

L+

√
A(r0)

4π
. (25)
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The theorem follows by contrapositive. �

Since condition (21) requires the mass content to exceed two terms related to the volume

of a spherical surface, Theorem 1 is in agreement with the TSC. Since L and A are independent

quantities, Theorem 1 poses a condition which is independent from M ≥ L. In addition, we

find that condition (21) predicts trapped surfaces in some spacetimes that do not satisfy M ≥ L

anywhere, especially in spacetimes where the proper area of a spherical surface is sufficiently

smaller than the proper radius of the surface. For example, we recall from Section 3 that the

constant-density star, described by Φ = (1+ r2)−
1
2 , does not satisfy M ≥ L anywhere. On the

other hand, for the constant-density star, condition (21) for a spherical surface of coordinate

radius r0 becomes

6
∫ r0

0
(1+ r2)−3r2 dr ≥ 1

2

∫ r0

0
(1+ r2)−1 dr + r0(1+ r2

0)
−1. (26)

This inequality is satisfied when r0 & 1.764. By comparison, as derived from the expansion

condition in (13), we know that every spherical surface of coordinate radius r0 ≥ 1 is trapped

in the case of the constant-density star. Therefore, not only does Theorem 1 predict trapped

surfaces in this case where M ≥ L is not satisfied anywhere in the spacetime, but it also predicts

trapped surfaces for a range of r0 unbounded from above, which agrees with our calculation in

(13). We see that Theorem 1 proposes a viable alternative condition to M ≥ L.

Next, we note that the energy density µ depends only on Φ, so we can consider µ as a

function of r, i.e., µ = µ(r). In the following theorem, we derive a different sufficient condition

for trapped surfaces that involves the derivative of µ(r).

Theorem 2. Assume that the time slice is spherically symmetric and time-symmetric. For some

spherical surface δΩ of coordinate radius r0, if

∫ r0

0
A

3
2

dµ

dr
dr ≥ [A(r0)]

3
2 µ(r0), (27)

then there exists a trapped surface inside δΩ.

Proof. From (6) and (8), we can find an expression for the derivative of the Laplacian of the
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conformal factor:
d
dr

(∆Φ) =−2π
dµ

dr
Φ

5 +5Φ
−1(

dΦ

dr
)∆Φ. (28)

We begin from (19) and obtain:

∫
Ω

µ dV =−2
∫ r0

0
r2

Φ∆Φdr

=−2
3

r3
Φ∆Φ|r=r0 +

2
3

∫ r0

0
r3 d

dr
(Φ∆Φ)dr

=−2
3

r3
Φ∆Φ|r=r0 +

2
3

∫ r0

0
r3(

dΦ

dr
∆Φ+Φ

d
dr

(∆Φ))dr,

(29)

where the second equality is obtained through integration by parts. Substituting (28) into (29),

we obtain:

∫
Ω

µ dV =−2
3

r3
Φ∆Φ|r=r0 +

2
3

∫ r0

0
r3[

dΦ

dr
∆Φ+Φ(−2π

dµ

dr
Φ

5 +5Φ
−1 dΦ

dr
∆Φ)]dr

=−2
3

r3
Φ∆Φ|r=r0 +4

∫ r0

0
r3 dΦ

dr
∆Φdr− 4

3
π

∫ r0

0
r3

Φ
6 dµ

dr
dr.

(30)

Assume there are no trapped surfaces inside δΩ. Then 0 > dΦ

dr > −Φ

2r everywhere inside δΩ,

and since ∆Φ is negative, we have an upper bound on the integral of energy density:

∫
Ω

µ dV <−2
3

r3
Φ∆Φ|r=r0 +4

∫ r0

0
r3(−Φ

2r
)∆Φdr− 4

3
π

∫ r0

0
r3

Φ
6 dµ

dr
dr

=−2
3

r3
Φ∆Φ|r=r0 +

∫
Ω

µ dV − 4
3

π

∫ r0

0
r3

Φ
6 dµ

dr
dr.

(31)

where we use (19) to obtain the first equality. We see that the integrals of energy density on the

left hand side and right hand side cancel. By contrapositive, if

∫ r0

0
r3

Φ
6 dµ

dr
dr ≥− 1

2π
r3

Φ∆Φ|r=r0 = r3
0[Φ(r0)]

6
µ(r0), (32)

then there exists a trapped surface inside δΩ. Substituting the proper area A = 4πr2Φ4 into

(32) yields the theorem. �

While condition (27) uses the radial coordinate, it depends only on terms derived from two

geometrical quantities, the proper area and energy density, so it is applicable in any spherically

symmetric coordinate system rather than only the isotropic coordinate system. In this respect,
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it holds an advantage over the expansion condition, which, in a general coordinate system, can

only be specified in terms of the initial data rather than geometrical quantities.

However, there are several aspects of condition (27) that limit its usefulness. Condition

(27) includes an upper bound on a term proportional to the energy density at a point. As a

result, it deviates from our expectation that the mass content must exceed some volume-related

quantity of the spherical surface for a trapped surface to exist, as stated in the TSC. In addition,

in spacetimes where µ(r) is decreasing, the integral on the left hand side will be non-positive

but the quantity on the right hand side is strictly positive, so (27) is not satisfied anywhere in

such spacetimes.

5 Nonvanishing Extrinsic Curvature

In this section, we will remove the constraint of the time-symmetric slice, on which the

extrinsic curvature vanishes, and we allow for matter flow, i.e nonzero jb. In Bizon et al.,

1988, the authors discuss a matter distribution in a maximal slice, where the mean curvature

vanishes, and obtain a sufficient condition for the existence of trapped surfaces based on both

mass content and matter flow: ∫
Ω

µ− j·ndV ≥ 7
6

L. (33)

However, the maximal slice is a restrictive assumption that may not be found in every spheri-

cally symmetric spacetime. A stronger result may be found by relaxing restrictions on the mean

curvature. In the following theorem, we show that condition (33) is applicable in spacetimes

with a much weaker set of assumptions.

Theorem 3. Let δΩ be a spherical surface in a spherically symmetric time slice. If

trK ≥ 0 (34)

everywhere inside δΩ and ∫
Ω

µ− j·ndV ≥ 7
6

L, (35)

then there exists a trapped surface inside δΩ.
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Proof. The Hamiltonian constraints and expansion condition both depend on several scalars de-

rived from the extrinsic curvature, including KabKab, Kabnanb. In addition, the term Kab∇bna

appears in the integral of the Hamiltonian constraint for momentum density. To directly cal-

culate these scalars, we require an explicit formula for the extrinsic curvature. In a spherically

symmetric time slice, we can always write the extrinsic curvature as

Kab = (nanb)KL +(gab−nanb)KR, (36)

where KL and KR are both functions of the radial coordinate only (Guven and Murchadha,

1999). Contracting (36), we obtain

trK = gabKab = (gabnanb)KL +(gabgab)KR− (gabnanb)KR

= KL +2KR.

(37)

This allows us to rewrite (36) in terms of trK and KR:

Kab = (nanb)trK +(gab−3nanb)KR

= (nanb)trK +(nanb−
1
3

gab)K′
(38)

where K′ = −3KR. Now we raise the indices of the extrinsic curvature to obtain Kab and

calculate the scalars KabKab, Kabnanb, and Kab∇bna as below:

KabKab = (trK)2 +
4
3
(trK)K′+

2
3

K′2,

Kabnanb = trK +
2
3

K′,

Kab
∇bna =−

1
3

K′Φ−6r−2 d
dr

(Φ4r2).

(39)

Note that Kab∇bna does not depend on trK, so the value of Kab∇bna in any CMC slice is

identical to that in the maximal slice. Then the Hamiltonian constraints (2) become

−8Φ
−5

∆Φ− 4
3
(trK)K′− 2

3
K′2 = 16πµ,

∇aKab−gab
∇a(trK) = 8π jb.

(40)
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The expansion condition (3) becomes

d
dr

(rΦ
2)+

1
3

K′rΦ
4 ≤ 0. (41)

Note that, in the expansion condition, all the terms involving trK cancel, so the expansion

condition in a general time slice are unchanged compared to those in the maximal slice. Using

the scalars derived from Kab, based on the reasoning in Bizon et al., 1988, we write out the

integral
∫

Ω
µ− j·ndV with a few extra terms involving trK:

16π

∫
Ω

µ− j·ndV =− [16πr
d
dr

(rΦ
2)]|r=r0 +16π

∫ r0

0
[

d
dr

(rΦ
2)+2r2(

dΦ

dr
)2]dr

− 16
3

π

∫ r0

0
(trK)K′r2

Φ
6 dr− 8

3
π

∫ r0

0
K′2r2

Φ
6 dr

− [8πr2
Φ

4(trK +
2
3

K′)]|r=r0−
8
3

π

∫ r0

0
K′

d
dr

(r2
Φ

4)dr

+8π

∫ r0

0
r2

Φ
4 d

dr
(trK)dr.

(42)

Using (41), if there are no trapped surfaces inside δΩ, then everywhere throughout Ω we have

d
dr

(rΦ
2)+

1
3

K′rΦ
4 > 0. (43)

It was established in Bizon et al., 1988 that, in the case of no trapped surfaces, we have a bound

16π · 7
6

L >− [16πr
d
dr

(rΦ
2)]|r=r0 +16π

∫ r0

0
[

d
dr

(rΦ
2)+2r2(

dΦ

dr
)2]dr

− 8
3

π

∫ r0

0
K′2r2

Φ
6 dr− [

16
3

πr2
Φ

4K′]|r=r0−
8
3

π

∫ r0

0
K′

d
dr

(r2
Φ

4)dr.
(44)
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Assume that there are no trapped surfaces inside δΩ. Then, we have

16π

∫
Ω

µ− j·ndV

< 16π · 7
6

L− [8πr2
Φ

4trK]|r=r0−
16
3

π

∫ r0

0
(trK)K′r2

Φ
6 dr

+8π

∫ r0

0
r2

Φ
4 d

dr
(trK)dr

= 16π · 7
6

L−8π

∫ r0

0
r2

Φ
4 d

dr
(trK)dr−16π

∫ r0

0
(trK)rΦ

2 d
dr

(rΦ
2)dr

− 16
3

π

∫ r0

0
(trK)K′r2

Φ
6 dr+8π

∫ r0

0
r2

Φ
4 d

dr
(trK)dr

= 16π · 7
6

L−16π

∫ r0

0
(trK)rΦ

2[
d
dr

(rΦ
2)+

1
3

K′rΦ
4]dr,

(45)

where we have applied integration by parts and the identity d
dr (r

2Φ4) = 2rΦ2 d
dr (rΦ2) to obtain

the first equality. If trK ≥ 0 and there are no trapped surfaces inside δΩ, then (43) is true and

the second term in (45) is always negative, so we obtain

16π

∫
Ω

µ− j·ndV < 16π · 7
6

L. (46)

The theorem follows by contrapositive. �

Theorem 3 indicates that it is not necessary for a spherically symmetric spacetime to have a

maximal slice for condition (33) to be applicable. The geometric interpretation of positive mean

curvature inside δΩ is that every region inside δΩ locally increases in area in the direction of

the normal to the time slice with respect to which we have calculated the mean curvature.

One setting in which condition (33) is useful is a CMC slice, which is often found in cos-

mologies or asymptotically flat spherically symmetric spacetimes (Iriondo et al., 1996). Con-

dition (33) can be applied in any spacetime with a CMC slice for which the mean curvature is

non-negative with respect to the future-pointing normal to the time slice. However, we notice

that the negative second term in (45) is proportional to trK, which implies that (33) becomes

a stricter sufficient condition, and therefore a poorer predictor for trapped surfaces, at higher

values of the mean curvature. Condition (33) is most effective at predicting trapped surfaces

in a maximal slice or in a near-maximal slice, in which the mean curvature takes a very small

value.
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Note that, when trK = 0, Theorem 3 reduces to the main non-time-symmetric result of

Bizon et al., 1988.

6 Future Research

The results found in this paper rely on perfect spherical symmetry, which is uncommon

in real-world stellar matter configurations. One modification to the spacetime that may better

model physical scenarios is a small perturbation of spherical symmetry in a conformally flat

spacetime. In such a spacetime, the conformal factor Φ takes the form

Φ = f (r)+ ε f ′(x1,x2,x3) (47)

where r is the radial coordinate, x1,x2,x3 are the three spacelike coordinates, and the constant

ε > 0 is very small. In the case of a small perturbation of spherical symmetry, similar conditions

relating mass content and volume-related quantities may be found that are similar to those in

Bizon et al., 1988 and in this paper but with some modifications of the terms.

The case of axial symmetry corresponds to matter configurations with angular momentum,

so axial symmetry is a more accurate model of physical scenarios compared to perfect spherical

symmetry. Several inequalities relating mass, angular momentum, and volume-related quan-

tities for axisymmetric black holes have been found (Dain, 2014; Hennig et al., 2008; Dain,

2008). It has been found that sufficient concentration of angular momentum in a small volume

can lead to the formation of a black hole (Khuri, 2015). Some progress on the TSC in the

axisymmetric case has been made with the use of Brill coordinates (Khuri and Xie, 2017), in

which the line element takes the form:

ds2 = e−2U+2α(dρ
2 +dz2)+ρ

2e−2U(dφ +Aρdρ +Azdz)2. (48)

In this metric the Ricci scalar takes the form below (Chruściel, 2008):

− e−2U+2α

4
(3)R =−∆(U− 1

2
α)+

1
2
(DU)2− 1

2ρ

∂α

∂ρ
+

ρ2e−2α

8
(∂ρAz−∂zAρ)

2, (49)
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where ∆ and D are the flat-space Laplacian and gradient, respectively. In the constraint of time

symmetry, the Ricci scalar is directly proportional to the energy density at a point, greatly sim-

plifying calculations of mass content inside a closed two-surface using the axisymmetric Brill

coordinates. Using these techniques, further sufficient conditions and necessary conditions re-

lating mass content, angular momentum, and volume or area may be found for the existence of

a trapped surface in an axisymmetric spacetime.

It has also been claimed that concentration of gravitational radiation can lead to trapped

surface formation. In Beig and Murchadha, 1991, the authors constructed initial data with zero

matter-energy and showed that trapped surfaces form in cases when certain global invariants

are very small. Further evidence may be found for the existence of trapped surfaces due to

concentration of gravitational radiation that may shed light on novel extensions of the TSC.

7 Conclusion

In this paper, we found sufficient conditions for the existence of a trapped surface inside a

closed spherical two-surface on a time-symmetric time slice of a spherically symmetric space-

time. For a given matter configuration, if the mass content M inside a spherical two-surface

satisfies M ≥ 1
2L+

√
A(r0)

4π
, then the two-surface contains a trapped surface. This condition

requires that the mass content exceed a volume-related quantity of the two-surface, providing

further evidence for the validity of the Trapped Surface Conjecture. We found an additional suf-

ficient condition for the existence of a trapped surface relating the proper area, energy density,

and derivative of energy density with respect to the radial coordinate. We also generalized the

main non-time-symmetric condition of Bizon et al., 1988, which relates mass content, radial

flow, and proper radius, to spacetimes that do not contain a maximal slice. We also suggested

avenues for further progress on the Trapped Surface Conjecture, including small perturbations

of spherically symmetric spacetimes as well as the time-symmetric axisymmetric case in Brill

coordinates. Our results, as well as the future directions if pursued, constitute progress to-

ward the realization of the Trapped Surface Conjecture, offering insights into the conditions

surrounding black hole formation that are of use to both mathematicians and cosmologists.

18



References
[1] P. Bizon, E. Malec, and N. O. Murchadha. Trapped Surfaces in Spherical Stars. Physical

Review Letters 61(10): 1147-1150 (1988).

[2] P. Bizon, E. Malec, and N. O. Murchadha. Trapped Surfaces due to Concentration of Matter
in Spherically Symmetric Geometries. Classical and Quantum Gravity 6: 961-976 (1989).

[3] P. Bizon, E. Malec, and N. O. Murchadha. Binding Energy for Spherical Stars. Classical
and Quantum Gravity 7: 1953-1959 (1990).

[4] S. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Pearson, 2016.

[5] V. Faraoni. Evolving Black Hole Horizons in General Relativity and Alternative Gravity.
Galaxies 1: 114-179 (2013).

[6] R. Penrose. Gravitational Collapse and Space-Time Singularities. Physical Review Letters
14: 57 (1965).

[7] S. W. Hawking and R. Penrose. The Singularities of Gravitational Collapse and Cosmology.
Proceedings of the Royal Society A 314(1519): 529-548 (1970).

[8] H. Siefert. Naked Singularities and Cosmic Censorship: Commentary on the Current Situ-
ation. General Relativity and Gravitation 10(12): 1065-1067 (1979).

[9] W. Israel. Must Nonspherical Collapse Produce Black Holes? A Gravitational Confinement
Theorem. Physical Review Letters 56(8): 789-791 (1986).

[10] J. M. M. Senovilla. Trapped Surfaces. International Journal of Modern Physics D 20:
2139 (2011).

[11] M. Khuri. The Hoop Conjecture in Spherically Symmetric Spacetimes. Physical Review
D 80: 124025 (2009).

[12] E. Malec. Hoop Conjecture and Trapped Surfaces in Non-Spherical Massive Systems.
Physical Review Letters 67: 949-952 (1991).

[13] E. Malec and N. Xie. Brown-York Mass and the Hoop Conjecture in Non-Spherical Mas-
sive Systems. Physical Review D 91: 081501 (2015).

[14] E. Flanagan. Hoop Conjecture for Black-Hole Horizon Formation. Physical Review D 44:
2409-2420 (1991).

[15] R. Schoen and S. T. Yau. The Existence of a Black Hole due to Condensation of Matter.
Communications in Mathematical Physics 90: 575-579 (1983).

[16] R. Schoen and S. T. Yau. Geometry of Three Manifolds and Existence of Black Hole due
to Boundary Effect. Advances in Theoretical and Mathematical Physics 5: 755-767 (2001).

[17] J. Guven and N. O. Murchadha. Flat Foliations of Spherically Symmetric Geometries.
Physical Review D 60: 104015 (1999).

[18] R. Arnowitt, S. Deser, C. W. Misner. Gravitational-Electromagnetic Coupling and the
Classical Self-Energy Problem. Physical Review Letters 120: 313-320 (1960).

19



[19] M. Iriondo, E. Malec, N. O. Murchadha. Constant Mean Curvature Slices and Trapped
Surfaces in Asymptotically Flat Spherical Spacetimes. Physical Review D 54: 4792 (1996).

[20] S. Dain. Geometric Inequalities for Black Holes. General Relativity and Gravitation 46:
112501 (2014).

[21] J. Hennig, M. Ansorg, and C. Cederbaum. A Universal Inequality between the Angular
Momentum and Horizon Area for Axisymmetric and Stationary Black Holes with Sur-
rounding Matter. Classical and Quantum Gravity 25(16): 162002 (2008).

[22] S. Dain. Proof of the Angular Momentum-Mass Inequality for Axisymmetric Black
Holes. Journal of Differential Geometry 79(1): 33–67 (2008).

[23] M. Khuri. Existence of Black Holes due to Concentration of Angular Momentum. Journal
of High Energy Physics 2015: 188 (2015).

[24] M. Khuri and N. Xie. Inequalities Between Size, Mass, Angular Momentum, and Charge
for Axisymmetric Bodies and the Formation of Trapped Surfaces. Annales Henri Poincaré
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