
Synthetic Instruction Tuning for Retrieval-Augmented Code Generation

Ajay Arora Jacob Hansen Brian Huang
MIT

Abstract
Despite the impressive reasoning skills of
current large language models, they are still
prone to errors and inaccuracies for highly
knowledge-dependent tasks such as code gener-
ation. Fortunately, performance on such tasks
has been shown to improve when language
models are augmented with external knowledge
retrieval mechanisms. Even without external
memory, language models can also perform bet-
ter when treated with fine-tuning or in-context
learning methods that elicit reasoning in out-
puts. In this work, we explore the combination
of these two approaches in the setting of code
generation. In addition to providing autoregres-
sive language models with a code documenta-
tion retriever, we cast these models in an in-
context learning paradigm, using instances of
natural language clarification for task queries
as well as rationales for task question answer-
ing. The datasets used for in-context learning,
which include expanded queries and rationales,
are bootstrapped from GPT-3.5-turbo starting
from a small seed set of human-annotated in-
stances; as such, our method can be performed
with very little human supervision. We show
that various combinations of external retrieval,
chain-of-thought rationales, and data augmen-
tations can vastly improve code generation be-
yond the baseline performances of mid-size
pretrained LLMs. Our experiments reveal the
potential of co-integrating knowledge retrieval
methods with the natural language reasoning of
autoregressive decoder-only language models
for effective usage in code generation.

1 Introduction

The scaling of large language models in recent
years, particularly GPT-3 and GPT-4, has allowed
for major progress on tasks requiring difficult rea-
soning. One crucial emergent ability of LLMs
is chain-of-thought prompting (Jason Wei et al.,
2022), which demonstrates high performance on
tasks with or without few-shot prompting. Gen-
eration of rationales—intermediate reasoning for

problem solving explicitly performed in natural lan-
guage output—has proven to be valuable for LLMs
in settings such as mathematics, common sense
reasoning, and code generation (Nazneen Fatema
Rajani et al., 2019), (Vered Shwartz et al., 2020),
(Maxwell Nye et al., 2021). Another crucial ability
is in-context learning (Qingxiu Dong et al., 2023).
When an LLM is given exemplars of (question, an-
swer) pairs for a task, then prompted to answer a
new question in the same task, the model exhibits
high performance without having been finetuned
for that specific task.

Furthermore, knowledge distillation has success-
fully transferred reasoning capabilities from larger
models to models as small as one-tenth of the
original size (Rohan Taori et al., 2023), (Peng
et al., 2023), and careful pretraining has also led
to impressive reasoning at smaller scales (Team,
2023). Bootstrapping methods such as self-instruct
(Yizhong Wang et al., 2022) or STaR (Eric Zelik-
man et al., 2022) provide ways to generate high-
quality synthetic datasets for diverse instructions/-
tasks or chains-of-thought/rationales, respectively,
from the outputs of LLMs, beginning from just a
few human-written exemplars. By using this syn-
thetic data in the inputs or training loops of smaller
models, distillation or transfer of knowledge and
reasoning abilities into smaller models can be per-
formed in a near-automated fashion.

Despite this plethora of abilities, large lan-
guage models are often prone to errors in highly
knowledge-dependent settings. One such setting,
pertinent to real-world use cases today, is code
generation. Human programmers naturally refer
to consistently updated manuals and documenta-
tion when writing code, thereby avoiding errors.
To achieve similar improvements in performance,
recent research has introduced documentation re-
trieval into code generation pipelines for NLP mod-
els (Shuyan Zhou et al., 2023). Despite this, most
specialized code generation models in literature,



such as CodeT5 (Yue Wang et al., 2021) and Code-
BERT (Zhangyin Feng et al., 2020), have yet to
take advantage of the raw scale and powerful rea-
soning capabilities of the largest language models.

In this work, we explore combinations of in-
context learning, instruction bootstrapping, ratio-
nale generation and rationalization a la STaR (Eric
Zelikman et al., 2022), and code documentation re-
trieval for the natural-language-to-code-intent task.

We give an overview of our approach through
an example notated in Figure 1: given a natural
language intent, we run the query through a small-
scale LLM, such as a Mosaic MPT-7B model vari-
ant, fine-tuned on human annotated examples to
provide an enhanced version of the query with a
nuanced breakdown of the problem. We then pass
this enhanced query to a black-box retriever model
from (Shuyan Zhou et al., 2023) to retrieve top-k
documents for this query. We then pass the query
and relevant documentation to a second model (pos-
sibly the same as the first) instruction tuned on
synthetic data to generate a code snippet as an an-
swer to the original query. We perform this same
pipeline on a "teacher" model, GPT-3.5-turbo, to
generate a synthetic dataset usable in in-context
learning on our small LLM.

We explore the effectiveness of query, retrieval,
and rationale augmentation in an in-context learn-
ing setting, achieving comparable performance to
other recent methods (Shuyan Zhou et al., 2023).
Our approach demonstrates an impressive ability
for LLMs of smaller scale to generate coherent, cor-
rect reasoning on unseen code generation problems.
We also implement ablations to study the effects
of each augmentation, elucidating possible short-
comings and failure modes in our code generation
pipeline.

2 Related Works

Our approach is a melting pot of methods pertinent
to LLM code generation, including external knowl-
edge retrieval, in-context learning, rationale gen-
eration, and bootstrapping off of language model
outputs. This section details the background for
these methods and explores related approaches that
have been proposed for improving code generation
or general reasoning abilities in LLMs.

2.1 Reasoning in LLMs

(Jason Wei et al., 2022) introduces the chain-of-
thought prompting method to enhance the reason-

ing abilities of large language models. By generat-
ing a rationale, a series of intermediate reasoning
steps, in response to a task query, LLMs experi-
ence improved performance on complex reasoning
tasks, including arithmetic, commonsense question
answering, and symbolic reasoning. The interme-
diate steps of chain-of-thought act as a "scratch-
pad" for reasoning, allowing LLMs to produce
higher-quality solutions. Among other settings,
chain-of-thought proves particularly valuable in
code generation tasks, which are consistently solv-
able by step-by-step reasoning from first principles.
In code, even seemingly straightforward operators
and functions can involve complex underlying logic
that requires breaking down the problem into inter-
mediate steps. Therefore, our approach integrates
chain-of-thought into the specific setting of code
generation. We aim to improve the quality of the
generated code snippet by leveraging rationale gen-
eration before the model outputs its final answer.

Rationale generation is further explored in the
Self-Taught Reasoner (STaR) method (Eric Zelik-
man et al., 2022). STaR aims to improve the perfor-
mance of language models on complex reasoning
tasks through iterative learning from rationale ex-
amples. First, a small number of human-written
rationale examples, the "seed" examples, is used
to generate synthetic rationales for a large dataset
of task examples. After generation, the language
model is bootstrapped—finetuned on its own syn-
thetic rationale outputs—to refine its reasoning abil-
ities; the model is then able to generate higher-
quality reasoning on unseen examples and tasks.
One crucial intervention in this bootstrap is "ra-
tionalization": to filter out lower-quality synthetic
data, STaR enumerates all synthetic rationales that
conclude with the wrong answer, and then regener-
ates each example, this time providing the correct
answer as a "hint" in the original query. With ra-
tionalization, this self-teaching process steers the
model in the direction of higher-correctness latent
reasoning for complex problem solving. We borrow
the synthetic rationale generation, complete with
rationalization, from STaR to prompt our models
with high-quality code generation reasoning during
in-context learning. Our application of STaR dif-
fers from the original in that we focus on in-context
learning without finetuning; we investigate whether
synthetic rationales can "steer" our models towards
more accurate code generation even without the
actual bootstrapping aspect of STaR.



Figure 1: An overview of the instruction tuning augmented pipeline from natural language query to generated code.
We indicate the three substeps of our pipeline, namely query augmentation, documentation retrieval, and code
generation.

Similar bootstrapping methods have appeared
alongside STaR in recent research. Self-instruct
(Yizhong Wang et al., 2022) also uses a small num-
ber of human-written exemplars to "seed" a large
synthetic dataset. As opposed to STaR, which ex-
amines chain-of-thought reasoning on a specific
target task, self-instruct focuses instead on generat-
ing new (question, answer) pairs for unseen tasks
and instructions from scratch, with the goal of boot-
strapping the instruction-following capabilities of
a model. In (Huang et al., 2022), an LLM is again
bootstrapped on its own chain-of-thought outputs
for various question-answering and reasoning tasks,
but here the filtering method is self-consistency,
a majority-voting mechanism on several different
completions of the same prompt.

2.2 Documentation Retrieval for Code
Generation

While chain-of-thought and bootstrapping meth-
ods (Jason Wei et al., 2022) (Eric Zelikman et al.,
2022) lead to substantial improvements in LLM
problem-solving and reasoning abilities, the spe-
cific setting of code generation poses many syntac-
tical and knowledge issues that cannot be overcome

with just improved reasoning. To aid a model’s rea-
soning, we provide external code documentation
retrieval by expanding on the work of DocPrompt-
ing (Shuyan Zhou et al., 2023). DocPrompting ad-
dresses the challenge of keeping language models
up-to-date with evolving code libraries by lever-
aging code documentation. Their approach rec-
ognizes that human programmers frequently refer
to outside textual resources such as code manu-
als and documentation to explore and understand
available functionality. The method uses a retriever
model, based on (Gao et al., 2022), to explicitly
retrieve relevant documentation for a code genera-
tion query before passing this documentation down-
stream to a code generation model. DocPrompting
thereby enhances the generation of code from natu-
ral language queries; the documentation retrieval
consistently leads to improvements on code gener-
ation tasks across benchmarks such as CoNaLa, a
Python-based benchmark, and tl;dr, a bash script
benchmark. The integration of documentation re-
trieval methods in code generation offers language
models the ability to generalize to unseen func-
tions and libraries outside their training data, which
would be much more difficult using just internal



knowledge and memory. Additionally, it provides
a reminder to the model for nuances in syntax and
updated code. Our work borrows several aspects of
the DocPrompting framework; we use their adapta-
tion of simCSE dense retrieval and benchmark on
their splits of CoNaLa.

2.3 Integration of Knowledge Retrieval and
Instruction Tuning

Building upon the insights from the aforemen-
tioned papers, this work combines chain-of-thought
prompting (Jason Wei et al., 2022), documenta-
tion retrieval (Shuyan Zhou et al., 2023), and ra-
tionale augmentation (Eric Zelikman et al., 2022)
(Yizhong Wang et al., 2022) to enhance the per-
formance of language models in code generation.
By combining these approaches, the proposed
framework aims to address the limitations of ex-
isting large language models in highly knowledge-
dependent tasks.

3 Methods

In this section, we expand upon the pipeline in Fig-
ure 1 and describe our usage of synthetic rationales,
rationalization, and in-context learning to push fur-
ther for improved code generation performance in
our models.

3.1 Query augmentation bootstrapping
Consider the example query Create list instancelist
containing 29 objects of type MyClass.

To inject reasoning into such queries, we con-
sider the analogy of a teacher or teaching assistant
breaking down a complex problem into its steps
with a student without necessarily revealing the im-
plementation of each step, simply with the problem
statement. For the given example, the intent can be
broken down into the following steps:

· creating list ‘instancelist’
· creating 29 objects of type MyClass
· containing them in the list

For this example the augmented query is:

Create list ‘instancelist‘ containing 29 objects
of type MyClass.

This requires creating list ‘instancelist’, creating
29 objects of type MyClass, and containing them
in ‘instancelist‘.

We adopt in-context learning for generating a
synthetic dataset of enhanced queries for a query
dataset Q to fine tune a smaller language model.

We begin with a small seed set of human anno-
tated mappings from intent to "enhanced intent"
P = {(qi, qei)}|Ni=1 (N = 3). Similar to few-shot
prompting, we concatenate P with a task descrip-
tion and batches of queries from Q with empty
enhanced intents, which is passed to a larger pre-
trained model to generate enhanced intents. Once
this synthetic dataset is created, we can use pairs
of (qi, qei) in the in-context learning exemplars of
a code generation problem for a smaller model.

3.2 Retriever
In our work, we use a dense retriever (Shuyan Zhou
et al., 2023) pretrained via a contrastive objective
(Gao et al., 2022). Exact training procedures and
additional information can be found in the appendix
of (Shuyan Zhou et al., 2023). We note that, since
our natural language queries are enhanced with ad-
ditional details, it would be necessary to retrain
the simCSE-based retriever for exact retrieval re-
sults in our new setting; however, for the scope
of this project, it is a reasonable assumption that
the original DocPrompting retriever gives a close
approximation of the would-be retrained retriever.

Given an enhanced query, the dense retriever re-
turns a list of the top-k code operators/functions for
the query, accompanied by their natural language
descriptions from code documentation. The func-
tions and corresponding docs are concatenated into
a "relevant documentation" part of the in-context
learning prompts for our model. Note that we trun-
cate this documentation to the first paragraph each,
allowing a potentially lengthy in-context learning
prompt to fit in the limited context sizes of our
smaller models.

3.3 Rationale augmentation bootstrapping
Similar to query augmentation, we begin with a
small-set of human annotated rationales for (en-
hanced query, documentation, command) tuples
and use in-context learning to curate a synthetic
dataset of rationales. This borrows the setup of
STaR (Eric Zelikman et al., 2022). For illustra-
tion, we return to the query example introduced in
Section 3.1: Create list instancelist containing 29
objects of type MyClass and the relevant retrieved
documentation for python range.

We structure human-written rationales to mimic
step-by-step thinking for building complex lines of
code. Namely, each step is followed by a code snip-
pet, and each additional step improves this code
snippet until an answer is reached. For example:



Figure 2: Examples of query augmentation and rationale generation, labelled by phenomena. Our baseline
synthetic data generation approach can be brittle, with failure modes such as redundancy, parroting, or no code
generation appearing occasionally in the data. As such, filtering or robustness methods like STaR-style
rationalization are necessary additions to our approach.

1 MyClass() instantiates new object of
type MyClass.

2 instancelist = [MyClass()] creates list
‘instancelist‘containing 1 object
of type MyClass.

3 instancelist = [MyClass() for i in
range(29)] creates list
‘instancelist‘ containing 29
objects of type MyClass.

4 The answer is instancelist = [MyClass()
for i in range(29)].

After generating synthetic rationales for each
query in our training set, we then borrow rational-
ization from STaR (Eric Zelikman et al., 2022) to
enforce high-quality rationale generation. Any ra-
tionales that generate an incorrect answer on a first
pass are re-run with a hint of the answer appended
to the end of the enhanced query to generate accu-
rate rationales. (While we only make one re-run
attempt for each query, it’s possible to further pol-
ish the quality of synthetic rationales with more
rationalization passes.)

After our synthetic generation and rationaliza-
tion are finished, these synthetic rationales are used
for in-context learning exemplars in our query to
the smaller model.

4 Experimental Setup

4.1 Data
We evaluate our framework on CoNaLa
(Pengcheng Yin et al., 2018), a Python code
generation benchmark collected from StackOver-
flow (N = 2800). Following (Shuyan Zhou et al.,
2023), we use a train-test-split such that every
example in the test set uses at least one Python
function (e.g. plt.plot) that was not seen in the
training data. We use the same database of Python
documents (N = 35K, devdocs.io) across
common Python packages.

4.2 Models
We use MosaicML MPT-7B-Chat (Team, 2023)
and Stanford Alpaca-7B (Hugo Touvron et al.,
2023) (Rohan Taori et al., 2023) for our small LMs
and use GPT-3.5-turbo for synthetic dataset gener-
ation. All models were trained and evaluated on a
100GB A100.

We evaluate our models on the test split of
DocPrompting CoNaLa. Because our models are
not finetuned for code generation, their answer
code snippet is encased in a larger context of natu-

devdocs.io


ral language output. To process outputs for evalua-
tion, we split the final sentence after "The answer
is"; truncate before stop words such as "Query:" to
give credit even if the model continues parroting;
and strip whitespace, punctuation, and back quotes.

5 Results

We include/exclude various combinations of our
four methods: in-context learning, code document
retrieval, synthetic rationales, and STaR-style ratio-
nalized rationales. This constitutes a comprehen-
sive ablation study on model performance in code
generation. Our results are displayed in Table 1.

Our maximal configuration, which includes 2 in-
context learning exemplars, code retrieval, and ra-
tionalized synthetic rationales, shows consistent im-
provement upon the baseline, where no in-context
learning, retrieval, or synthetic rationales are used.
This improvement is highly visible in MPT-7B-
Chat; on the other hand, Stanford Alpaca-7B al-
ready shows an impressive baseline ability for code
generation, so improvements from the maximal
configuration as indicated by charBLEU and Ex-
act Match are marginal, if not insignificant. Al-
though results for the maximal configuration are
ambiguous, the advantage of our approach actu-
ally becomes clear when code retrieval is ablated
away. Examining just BLEU-4 and charBLEU,
our strongest results across all ablations occur at
2-shot in-context learning with rationalized syn-
thetic rationales, but no retrieval. In fact, in these
cases, removing retrieval improves charBLEU by
approximately 8 points in both models, with simi-
lar increase in BLEU-4! Indeed, in every ablation
pair with/without retrieval, the addition of retrieval
negatively impacts the model’s performance on all
metrics.

Fortunately, for our other components of in-
context learning and synthetic rationales, we ex-
perience consistent improvements when they are
included. Without any other augmentations, includ-
ing just two (question, answer) exemplars for MPT-
7B-Chat increases BLEU-4 by 14.33 points and
charBLEU by 18.78 points. Even for Alpaca-7B,
where the baseline performance is impressive, each
of the 2-shot cases experiences a higher BLEU-4
than the zero-shot cases.

It is worth noting that exact match is a highly brit-
tle and biased measure compared to BLEU scores,
which award partial credit. Exact match measures
an absolute yes/no for correctness, which is the

metric humans care more about, but this is con-
founded by the existence of multiple solutions for
almost any code generation problem. An exten-
sion of this study might generalize exact match to
pass@k to provide a more robust measure of cor-
rectness in code generation. (Note that exact match
is equivalent to pass@1.)

5.1 Examining synthetic rationales

From hand-examination, our synthetic dataset is
well-behaved and accurate. Namely, the vast ma-
jority of our generated rationales constitute 1-3 sen-
tences of natural language reasoning based on the
retrieval, building step-by-step on the query, culmi-
nating in a sentence that is precisely “The answer
is” followed by a code snippet. While the format-
ting is stable, the outputs from GPT-3.5-turbo don’t
reach the exact answer very often, and only 189
out of 2117 synthetic samples have an exact match
on our initial pass. STaR-style rationalization is ex-
tremely effective at compensating for the imperfect
accuracy: a single pass of rationalization over the
synthetic dataset regenerated over half of the ex-
amples into exact matches, resulting in 1437 exact
matches in the rationalized synthetic dataset.

6 Discussion

Given the comprehensive research literature on
chain-of-thought and rationale generation for im-
proving LLM problem-solving and reasoning tasks,
it’s not too surprising that our cases where synthetic
rationales are included in a 2-shot prompt are gen-
erally the highest-performing of the ablation grid.
What may be surprising is that STaR-style rational-
izing the synthetic dataset actually does improve
upon the original synthetic dataset, even for our
limited in-context learning application. This im-
provement is not as significant for Alpaca-7B, but
MPT-7B-Chat experiences a 3.48-point increase in
charBLEU upon synthetic rationale rationalization.
Our results inadvertently provide a slight piece of
evidence against the viewpoint in (Sang Michael
Xie et al., 2022), who claim that in-context learning
helps a language model locate the latent concepts
for an input task, rather than learn to answer the
task from the exemplar answers. For our code
generation setting, it does improve performance to
have higher accuracy in the final answers of our
in-context learning exemplars.

The apparent importance of correctness and rel-
evance of in-context learning exemplars also hints



Mosaic MPT-7B-Chat
Ablation BLEU-4 charBLEU Exact Match
Zero-shot
No augmentation

11.58 12.3 1.11

Zero-shot
Retrieval

5.99 7.69 0.0

2-shot
No augmentation

25.91 31.08 4.26

2-shot
Rationale

25.77 29.67 2.22

2-shot
Retrieval

14.24 15.5 1.48

2-shot
Retrieval and rationale

22.58 26.65 2.22

2-shot
STaR rationalized

26.45 33.15 3.7

2-shot
Retrieval
STaR rationalized

21.67 25.28 1.11

Stanford Alpaca-7B
Ablation BLEU-4 charBLEU Exact Match
Zero-shot
No augmentation

18.73 25.24 1.85

Zero-shot
Retrieval

13.18 15.6 1.3

2-shot
No augmentation

21.17 23.98 2.04

2-shot
Rationale

27.91 33.59 2.59

2-shot
Retrieval

20.98 22.9 2.04

2-shot
Retrieval and rationale

19.61 23.54 2.22

2-shot
STaR rationalized

28.37 33.62 3.33

2-shot
Retrieval
STaR rationalized

21.05 25.66 2.04

Table 1: Ablation results from evaluating Mosaic MPT-7B-Chat and Stanford Alpaca-7B on CoNaLa with various
combinations of our augmentations. We use the pretrained retriever from (Shuyan Zhou et al., 2023) with top-3
retrieved docs. BLEU-4 measures BLEU scores with tokenization and maximum 4-gram order, while charBLEU
uses language-agnostic character-level tokenization. Best results for each column are bolded.



towards possible explanations for the poor perfor-
mance of retrieval. The top-3 documents returned
by our simCSE retriever can be error-prone and
highly noisy for the setting of code generation. It is
not uncommon that some of the top-3 documents
are irrelevant to the answer code snippet, and/or
that some functions in the answer code snippet
are not returned by the retriever. Even when all
retrieved functions are pertinent to the query, the
accompanying documentation can contain spurious
details unrelated to the answer code snippet. As
such, the retrieval in its current iteration may often
mislead or otherwise confound the model ability to
reason smoothly to the correct code snippet.

Besides correctness and relevance issues, the
retrieved documentation is also very lengthy, typ-
ically taking up the majority of tokens spanning
an exemplar. Both of our models have a limited
2048-token max context, and inclusion of retrieval
can easily take the input above 1000 tokens even
for 2-shot cases, so the sheer length of retrieval
may what is be degrading model performance. In
fact, we performed preliminary evaluations with
3 or 4 in-context learning exemplars and found
that the extra exemplars led to degenerate model
outputs much more often than using just 2 exem-
plars. Moreover, the prompt with 4 exemplars occa-
sionally exceeded 2048 tokens, making the prompt
unusable in our models.

6.1 Limitations

Our evaluated models are on the smaller end of
LLMs at only 7B parameters, and they are both
pretrained on general, diverse text. The limitations
of this regime of models for code generation, which
combines real-world domain knowledge with com-
plex step-by-step reasoning, are made more clear
by our experiments. The MPT-7B family includes
code tokens as 10% of all pretraining tokens, and
sources this data from The Stack, BigCode’s code
corpus (Team, 2023); on the other hand, the amount
of code pretraining in Alpaca-7B is unclear.

We note that Exact Match results are particu-
larly low across both MPT-7B-Chat and Alpaca-7B,
while GPT-3.5-turbo is able to generate a signif-
icantly higher percentage (8.93% = 189/2117)
of exact matches for the synthetic dataset even
before rationalization. Although GPT-3.5-turbo
likely dwarfs our 7B models in parameter size,
this observation points out a pitfall in our use of
chain-of-thought. It is well-known from (Jason

Wei et al., 2022) that below certain model sizes,
chain-of-thought reasoning fails to improve perfor-
mance and may actually hurt performance. Indeed,
our 7B models may be at the borderline of size
where chain-of-thought may not clearly improve
performance. Future work should explore larger
parameter models with CoT and larger context size
models where the volume of retrieval content and
the nature of retrieval-augmented reasoning may
not inherently hurt the computation.

7 Conclusion and Future Directions

Our study explored the combination of external
code retrieval, in-context learning, and synthetic
data augmentations such as bootstrapped rationales
to improve code generation performance. We con-
ducted experiments with our prompting and code
parsing setup on two small instruction-finetuned
language models. We elucidated the potential for
in-context learning, bootstrapped synthetic ratio-
nales, and rationalization to synergize and facilitate
impressive performance on code generation, even
for small-scale LMs not specialized for code gener-
ation. At the same time, our experiments exposed
the challenging nature of applying external knowl-
edge retrieval for prompting of LLMs.

All of our experiments were done without our
own fine-tuning, so it remains to be seen whether
finetuning our models for code generation may
yield improvements on top of our current approach.

Future work could expand our human-annotated
exemplars for our synthetic datasets and tune the
prompts used during training, as this may enhance
the model’s reasoning capabilities. To evaluate the
generated code more comprehensively and fairly
credit the wide range of correct code solutions, a
benchmark based on dynamic Python environments
with test cases could provide more reliable metrics
and enable a closer examination of the code’s func-
tionality and correctness. At the very least, our
approach may be evaluated on more diverse distri-
butions of code beyond the Python-based CoNaLa.

The rationale augmentation pipeline proposed
here can be applied to many external knowledge-
based problems beyond code-generation. This in-
cludes but is not limited to language translation, di-
alogue agents, technical question answering tasks.
Generally, we hope for this work to serve as a
foundation for injecting reasoning into retrieval-
augmented tasks.



References
Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-

man. 2022. STaR: Bootstrapping Reasoning With
Reasoning. NeurIPS.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2022.
Simcse: Simple contrastive learning of sentence em-
beddings.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. arXiv
preprint.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothee Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA: Open
and Efficient Foundation Language Models. arXiv
preprint.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models.
NeurIPS.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show Your Work: Scratchpads for Interme-
diate Computation with Language Models. arXiv
preprint arXiv:2112.00114.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain Yourself!
Leveraging Language Models for Commonsense Rea-
soning. ACL.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
Mine Aligned Code and Natural Language Pairs from
Stack Overflow. IEEE/ACM MSR.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A Survey on In-context Learning.
arXiv preprint arXiv:2301.00234.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford Alpaca:
An Instruction-following LLaMA model. GitHub
repository.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An Explanation of In-context
Learning as Implicit Bayesian Inference. ICLR.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo
Wang, Zhengbao Jiang, and Graham Neubig. 2023.
DocPrompting: Generating Code By Retrieving The
Docs. International Conference on Learning Repre-
sentations (ICLR).

MosaicML NLP Team. 2023. Introducing mpt-7b: A
new standard for open-source, ly usable llms. Ac-
cessed: 2023-03-28.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
Commonsense Question Answering with Self-Talk.
EMNLP.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A. Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-Instruct: Aligning Lan-
guage Model with Self Generated Instructions. arXiv
preprint arXiv:2212.10560.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. EMNLP.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A Pre-Trained Model for Programming and
Natural Languages. EMNLP.

http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2304.03277
http://arxiv.org/abs/2304.03277

